Evolution of Biped Walking Using Truncated Fourier Series and Particle Swarm Optimization

نویسندگان

  • Nima Shafii
  • Siavash Aslani
  • Omid Mohamad Nezami
  • Saeed Shiry
چکیده

Controlling a biped robot with a high degree of freedom to achieve stable and straight movement patterns is a complex problem. With growing computational power of computer hardware, high resolution real time simulation of such robot models has become more and more applicable. This paper presents a novel approach to generate bipedal gait for humanoid locomotion. This approach is based on modified Truncated Fourier Series (TFS) for generating angular trajectories. It is also the first time that Particle Swarm Optimization (PSO) is used to find the best angular trajectory and optimize TFS. This method has been implemented on Simulated NAO robot in Robocup 3D soccer simulation environment (rcssserver3d). To overcome inherent noise of the simulator we applied a Resampling algorithm which could lead the robustness in nondeterministic environments. Experimental results show that PSO optimizes TFS faster and better than GA to generate straighter and faster humanoid locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biped Walking Using Coronal and Sagittal Movements Based on Truncated Fourier Series

Biped walking by using all joint movements and DOFs in both directions (sagittal plane and coronal plane) is one of the most complicated research topics in robotics. In this paper, angular trajectories of a stable biped walking for a humanoid robot are generated by a Truncated Fourier Series (TFS) approach. The movements of legs and arms in sagittal plane are implemented by an optimized gait ge...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

Gait Optimization on a Humanoid Robot using Particle Swarm Optimization

This paper describes the application of Particle Swarm Optimization (PSO) for gait optimization on a humanoid robot. The biped gait is modeled by a number of parameterizable trajectories. To achieve omni-directional walking, different sets of gait parameters are optimized for specific walk directions and interpolated later. By using a fitness test based on an acceleration walk, the optimized se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009